WeaveAPI-0.7.0-eventMethods

1

WeaveAPI-0.7.0-eventM ethods
- Documentation for Weave
events, Version 0.7.0

TheWeav e isanavigatible object database, implemented using O f si der technology. It can befound
ahttp://weavedb. sourceforge. net/.

This manual documents the methods understood by items stored on such a database. In Weave
nomenclature, a database item is called an event.

The API for the database itself is documented seperately (WeaveAPI-0.7.0), asisthe details of the web-
based cgi interface (WeaveAPI-0.7.0-cgil nterface).

Generics

The weave is a database, and the items on the database are called events. Each event is itself an
anonymous offsider (ie, and offsider that does not by default have a named executable).

Normally, you would send a message to an event by passing the message through the weave.

In order to reduce duplication of code, the weaveitself provides many methods that events on the weave
can recognise. Of course, any particular event might recognise methods that over-ride the methods
provided by the weave.

iISNullEvent

Thenul | Event isachild offsider of the weave, but is not an event on the weave.

The nul | Event is used to detect when an attempt is made to navigate to a non-existent event.
Any attempt to send a message to a non-existent event will result in the message being sent to the
nul | Event .

This method is used to test whether the target of the messageisthe nul | Event , or not.

Events on the weave have their own version of thei sNul | Event method. Thenul | Event hasits
version.

When sent to an event on theweave, themessagei sNul | Event will return an empty string, indicating
that itisnot thenul | Event .

newerThan

Test whether this event is newer than a certain time.

Syntax:

WeaveAPI-0.7.0-eventMethods

2

newer Than nunber Seconds [ts]

t s isintheform of auni que. ti nmest anp.
If t s isgiven, tests against that timestamp, otherwise, tests against the current time.

Cadlculatesthe difference (in seconds) between the given timestamp and the event'si d. If the difference
is less than the number of seconds given, then returns the difference (in seconds). Otherwise, returns

an empty string.
olderThan
Test whether this event is older than a certain time.

Syntax:

ol der Than nunber Seconds [ts]

t s isintheform of auni que. ti nmest anp.
If t s isgiven, tests against that timestamp, otherwise, tests against the current time.

Calculatesthe difference (in seconds) between the given timestamp and the event'si d. If the difference
is greater than the number of seconds given, then returns the difference (in seconds). Otherwise, returns

an empty string.
Weave
Send a message to the event's weave.

syntax:

Weave [nessage |

If message isnot specified, returns the weave's base directory.

Event methods for Presentation

The following methods are understood by events on the Weave. They are methods to do with presenting
information from the event.

asHtml
Show the contents of the event as a snippet of html.
Syntax:
asHt m
This method is specifically written to integrate with the standard weave http cgi interface.

asText

Show a summary of the contents of the event as text.

Syntax:

asText

WeaveAPI-0.7.0-eventMethods

3
fastHtml

Return a snippet of html to display the contents of the event.
syntax:

fast Ht m
This method is specifically written to integrate with the standard weave http cgi interface.

navAsHtm|
Show a havigation key as a snippet of html.
syntax:

navAsH m key cgi url

where key isthe name of the navigation key to display, and cgi ur | isthe url of the cgi that displays
an event.

Event Navigation

The Weave is a navigatible database. This means that you are able to navigate from one event in the
database to another (similar to the way you can link from one page to another in the World Wide Web).

All navigation from one event to another is handled in the same way. The event contains a set of
navigation keys, and each navigation key contains areference to an event in the Weave. (Alternatively,
anavigation key can contain 0, which indicates that no event is referenced by that key.)

The following exampleillustrates the concept of navigation, using the default syntactic sugar:

thi s navKey

will return the internal reference to the event specified by the navigation key navKey.

this navKey nessage
sends the message message to the event specified by the navigation key navKey.

Some navigation keys have special meaning within the weave. Y ou should not attempt to set the values
of these keys directly. Use the appropriate methods, and the keys will be maintained in a meaningful
and consistent manner.

bef or e, af t er - Cronological ordering of events

Aseacheventiscreated, itisgiven atimestamp asitsi d. Thetimestamp impliesacronological ordering
of al the events on the weave.

From each event you can navigate to the events that lie just before and just after, according to this
cronological ordering. By using thisnatural time order, it ispossible to access every event on the weave.
Either start withWeave ol dest andfollowtheaf t er navigationlinks, or start at V\eave newest ,
and follow the bef or e navigation links.

These two keys are set whenever an event is created. Also, they are checked again under certain
circumstances, and corrected if they are found to be incorrect.

WeaveAPI-0.7.0-eventMethods

parent, previ ous, next, ol dest Chi |l d, newest Chi |l d -
Creating heirarchical structures.

You can create heirarchical structures within the set of weave events (see methods i sChi | dOF
i sPar ent To, etc).

The rel ationships between eventsin any given heirarchical structureis provided by the navigation links
par ent, previ ous, next, ol dest Chi | d and newest Chi | d.

By following these links, you can visit al of the eventsin any given heirarchical structure.

These keys are set as appropriate whenever aheirarchical structure is modified.

Ad-hoc linkages

Y ou are free to devise your own navigation key names, to link from one event to another (similar to the
way web pages link from one to another). Low-level methods are provided to set and follow navigation
links.

Often, when you are designing a weave, you will decide that a class of events will all have the same
set of navigation keys, which make sense for events in that class. It is recommended that you write
special methods to handle each class of events. These methods should create and manage these keys
so that they remain consistent and meaningful. The details of this are, of course, domain specific and
application specific.

after

Send a message to the next event in the weave after the current one.

Syntax: $ after [message]

If message is not given, returns the internal reference contained in that key, otherwise, sends the

message to the event referenced by that key.

before

Send a message to the next event in the weave before the current one.
syntax: $ before [message]

If message is not given, returns the internal reference contained in that key, otherwise, sends the
message to the event referenced by that key.

fastList

Starting at this event, navigate to successive events using the specified navigation key. As each event
isvisited, send the specified message to it.

syntax:

fastList [withRef] nav max nessage

arguments are:

nav - the navigation key to use

4

WeaveAPI-0.7.0-eventMethods

5

max - the maximum number of events to navigate to.

Navigation will stopwhenthenul | Event isreached, even if the maximum has not yet been reached.
al | or 0 means don't stop until thenul | Event isreached.

message pass this message to each event in turn.
If thekeywordwi t hRef isgiven asthefirst argument, then the event'sinternal referencewill be printed

for each event visited.

hasNavigation

Does this event have the specified navigation key?
syntax:

hasNavi gati on key

where key isthe name of the navigation key to use.

If the key exists, the full path to the key is returned.

me
Send a message to the current event.

Y ou would not normally use this method to send a message, since the message can be sent directly.
This method is provided for compl eteness (it behaves the same as other navigation-specific methods)
syntax:

me [nmessage]
When amessageisspecified, t hi s nessage isthesameast hi s nme nmessage, however notethat:
t hi s me returnstheinternal reference.
whereas

t hi s returns the base directory.

navigate
Send a message to an event that is connected to this one by a navigation key.

syntax:

navi gate key [message |

wherekey isthe name of the navigation key to use, and nessage isthe message to send to that event.

If message is not given, returns the internal reference contained in that key, otherwise, sends the
message to the event referenced by that key.

If key isnot found in $BASEDI RECTCRY/ navi gat i on, then an error is generated, and areference
of 0 isused.

newestChild

WeaveAPI-0.7.0-eventMethods

6
Send a message to the most recently added child of this event.
syntax:

newest Child [nessage]

If message is not given, returns the interna reference contained in that key, otherwise, sends the
message to the event referenced by that key.

next

Send a message to the next event in the weave having the same parent as this one. The next event isin
the order that the children were added to the parent, not timestamp order.

syntax:
next [message |

If message is not given, returns the internal reference contained in that key, otherwise, sends the
message to the event referenced by that key.

oldestChild

Send a message to the first child to be added to this event.
syntax:

ol destChild [nessage]

If message is not given, returns the internal reference contained in that key, otherwise, sends the
message to the event referenced by that key.

parent

Send a message to the parent of this event.
syntax:

parent [nessage |

If message is not given, returns the internal reference contained in that key, otherwise, sends the
message to the event referenced by that key.

previous

Send a message to previous event in the weave having the same parent as this one. The previous event
isin the order that the children were added to the parent, not timestamp order.

syntax:
previous [nessage]

If message is not given, returns the internal reference contained in that key, otherwise, sends the
message to the event referenced by that key.

renameNavigation

Change the name of an existing navigation key.

WeaveAPI-0.7.0-eventMethods

Z

syntax:

renaneNavi gati on ol dnamre newnane

whereol dnane isthe existing namefor the navigation key, and newnarre isthe nameto changeit to.

setNavigation

Set avalue for a navigation key. Once set, the key can be used to navigate to the event referenced by
that key.

syntax:

set Navi gate key [reference]

key is the name for the key. Avoid using standard names which have special meaning to weave
events. Standard names are: e after before parent next previous ol destChild
newest Chi |l d

r ef er ence isaninternal reference to a Weave event. (no check is done on its validity)

If ref erence is not specified, then it will be taken to be 0, which indicates that the key does not
reference avalid event.

This can be used to disable areference without deleting the key.

sugar
Provide syntactic sugar for navigation.
converts amessage isin the form:

navi gat i onKey nessage
to:
navi gat e navi gati onKey nessage

syntax:

sugar text

This method overrides the default sugar method provided by the Offsider framework.

Parents

You can set up heirarchical structures within the weave events by nominating various events as being
the parents of other events. Each event have at most one parent, but a parent may have any number
of children.

closestChildAfterid

Find the closest child of this event which comes after the given timestamp.

Syntax:
closestChil dAfterld ts

Wheret s isatimestamp in the form of auni que. t i nest anp.

WeaveAPI-0.7.0-eventMethods

8

Returns the reference to the closest child, if thereisone. O otherwise.

closestChildAfterRef
Find the closest child of this event which comes after the given event reference.

Syntax:
cl osest Chi | dAft er Ref ref

wherer ef isan event reference.

Returns the reference to the closest child, if thereis one. O otherwise.

closestChildBeforeld
Find the closest child of this event which comes before the given timestamp.
syntax:

cl osest Chil dBeforeld ts
wheret s isatimestamp inthe form of auni que. ti mest anp.

Returns the reference to the closest child, if thereisone. O otherwise.

closestChildBeforeRef
Find the closest child of this event which comes before the given event reference.

Syntax:
cl osest Chi | dBef or eRef ref

wherer ef isan event reference.

Returns the reference to the closest child, if thereisone. O otherwise.

IsChildOf
Make this event the newest child of another event (its parent).
syntax:

i sChildOF ref
wherer ef istheinternal reference of the event that isto be the parent.

isParentOf
make this event the parent of another event. The other event becomes this event's newest child.

syntax:

i sParent O ref
wherer ef istheinternal reference of the event that isto be the child.

orphan

WeaveAPI-0.7.0-eventMethods

9

Unlink this event from its parent, if any.
syntax:

or phan

prune

Remove this event and any children. Recursively prune the children as well.
Syntax:

prune

Named Events
A named event is an event that can be referenced by name, using a syntax like

weave nane nessage

where weave is the named executable for the weave, namne is the name of the event and nessage
is the message to send to the event.

iIsSChildOfNamedEvent

Make this event a child of a named event.
syntax:
i sChi | dOF NanedEvent nane

where nane isthe name of the named event.

nameMe

Make this event into a named event.
syntax:

naneMe nane

nane isthe nameto use for this event.

Templates

An event can subscribe to zero or more tempates. When it is searching for a method, it will ook to its
templates as part of that search.

A template therefore provides a mechanism somewhat similar to the concept of a class in certain
(multiple inheritance) object-oriented programming languages.

addTemplates
Add to thelist of templates for this event

syntax:

WeaveAPI-0.7.0-eventMethods

10

addTenpl ates tenpl ates

wheret enpl at es isalist of template names.

The new template names are added at the head of the existing list, so they will be searched in first.

externalMethods

Provide alist of all methods that the event understands, which are not owned by the event.
syntax:

external Methods [fullPath]

If ful | Pat h is specified as a keyword, then the full path of each executable is returned, otherwise
just the method names are returned.

This method overrides the default ext er nal Met hods method, as provided by the Offsider
framework.

isMethod

Determine whether this event responds to the named method.
syntax:

i sMet hod et hodName
Returns the full path to the executable that implements the method.

resolvein thisorder:

method owned by the event: met hodNane

method owned by atemplate: met hodNane

method supplied by the weave: of f si der . met hodNane

method supplied elsewhere: of f si der . net hodNane

This method overrides the default i sMet hod method, as supplied with the Offsider framework.

setTemplates
Set the list of templates for this event.

syntax:

set Tenpl ates tenpl ates

wheret enpl at es isalist of template names.

templateMethods
List all the methods provided by this event's templates.

Syntax:

t enpl at eMet hods

WeaveAPI-0.7.0-eventMethods

11
Collections

A collection is a mechanism for grouping events together in ordered lists.

(The pr evi ous and next navigation links can do this too, but any event can only have one set of
such links.)

On the other hand, and event can belong to any number of different collections.

For each collection that an event belongs to, it has a navigation key that points to one link in that
collection's chain.

Each event in the collection points to itslink in the chain using a navigation key. The name of this key
can be anything, and it is not neccessary that all events in the collection use the same navigation key.

Each collection is thus composed of a number of links, and each link points to an event that belongs
to the collection. The navigation key used by the link is poi nt sTo. The event that the link points
to is said to belong to the collection. The link does not belong to the collection, it is just part of the
mechanism for implementing the rel ationships between all the events in the collection. Each link also
has navigation keyspr evi ous and next , which point to the neighbouring links, and a navigation key
par ent , which points to the common parent of all the links.

Note: Currently, collections are known as relationships

Each link in the chain has acommon parent. This parent event is known as the collection’s parent.

newRelationship
Create anew relationship, and attach this event to it.

syntax:

newRel ati onshi p name [sunmary]

name is the name of the navigation key from this event to the relationship.

summary is used as athe summar y key to the parent of the relationship chain.

relationshipNext
Send a message to the next event in arelationship.

syntax:

rel ati onshi pNext name [nessage |

nane is the name of the key that points to the relationship. nessage is the message to send to the
next event.

relationshipPrevious

Send a message to the previous event in a relationship.

syntax: $ relationshipPrevious name [message |

nane is the name of the key that points to the relationship. nessage is the message to send to the
next event.

WeaveAPI-0.7.0-eventMethods

12

setRelationship

Attach this event to a pre-existing relationship chain.

syntax: $ setRelationship name previous previousName

nane isthe relationship name to be used by this event.

pr evi ous istheinternal reference of another event aready in the relationship chain.

pr evi ousNane isthe relationship name being used by the previous event.

Event Flow

Because the weave is a navigatible database, and because each event on the weave is an object, we have
the possibility for anovel form of programming called event flow.

Consider using the weave to store a program. Each step in the program is stored in each own event.

In a normal imperative programming language, the sequence of execution flows naturally from one
step to the next. To ater that sequence of execution, we have various (standard) control structures.
The simplest imperative languages havegot o andcondi ti onal got o statementsto over-ridethis
normal sequential flow.

The concept of event flow removes the idea of an encasing or enclosing control structure, and instead
gives each event the ability to decide the next action in the sequence.

Thus, at every point, the event not only provides the action at that point, it also provides the decision
for which event to go to next.

Under the current model for event flow, we have two possible directions in which the flow can continue.
These are called down and across, and they correspond to if true and if false in a conditional goto.

Thisconcept isstill being worked out, and the methods documented in this section will probably undergo
aredesign in the future.

flow

Perform this event's part in aflow sequence.
syntax:

fl ow

The sequenceis:
Perform the flow rule.

If the rule returns an empty string, flow across, otherwise flow down.

flowAction

What to do when the rule has been satisfied, prior to flowing down to the next event.
syntax:

fl owActi on

WeaveAPI-0.7.0-eventMethods

13

By default, performst hi s NOP.

flowDown

The rule was satisfied, flow down to the next event
syntax:
f 1 owDown

flowEntry

set up ready for the flow decision in this event
syntax:

flowentry
By default, performst hi s NOP.

flowNext

The rule was not satisfied, flow to the next event
syntax:
f 1 owNext

flowNextAction
what to do when the rule has NOT been satisfied, prior to flowing down to the next event.
syntax:

f | owNext Acti on
By default, performst hi s NOP.

flowRule
A rule to decide whether to flow across or down.
Syntax:

fl owRul e

If this event satisfies the rule, return a non-empty string If this event does not satisfy the rule, return
an empty string.

By default, performst hi s NOP. The default action will stop the flow at the newest Chi | d.

flowStop
What to do when the flow stops at this event

syntax:
fl owSt op

WeaveAPI-0.7.0-eventMethods

14

By default, performst hi s NOP.

startFlow

Start aflow from this event.
syntax:

start Fl ow

Various environment variables can be used to specify the various parts of the flow mechanism at each
event that it flows to.

FLOVWENTRY message on entry to the event

FLOWRUL E message to decide whether to flow across or down.
FLOWMACTI ON message to perform before flowing down

FL OADOWN message to flow down

FLOWNEXTACTI ON message to perform before flowing across
FLOWNEXT message to flow across

FLOWSTOP message to cease the flow.

If any of these are not set, they will get set to the appropriate default method name. For example
SFLONENTRY will get settof | owEnt ry.

(20100527 17:04:15) This page was produced using r sm . Source file was WeaveAPI - 0. 7. 0- event Met hods
The online version can be viewed at: htt p://weavedb. sour cef orge. net/

